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ABSTRACT 

A new procedure for assessing peak origin and purity in chromatographic calibration is presented. Chemical analytes were 
mixed according to an experimental design in order to achieve independent concentration patterns. One-dimensional chromato- 
grams were analysed as digital profiles with the heuristic evolving latent projections (HELP) method after minimization of the 
retention time shifts between target peaks by a simplex technique. The origin of peaks was assessed by calculating the correlation 
between concentration patterns, obtained as the first loadings in HELP from principal component analysis (PCA) on selective 
chromatographic regions, and the patterns in the designed mixtures. Co-eluting impurities and overlapping peaks could be 
detected, resolved and quantified. Only a few non-overlapping data points were needed to assess the origin of peaks. 
Latent-variable correlation chromatograms are introduced as a powerful tool for the assignment of chromatographic areas with 
similar concentration patterns. 

INTRODUCTION 

Calibration in chromatographic analysis is 
commonly carried out by mixing all the chemical 
compounds in a stock standard solution, fol- 
lowed by sequential dilution to give working 
standard solutions of different concentrations. 
This creates a situation where all the chromato- 
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graphic peaks from the standards are correlated. 
Chromatograms often contain different types of 
“ghost” peaks, for example from derivatization 
reagents, column bleed and carryover from pre- 
vious samples or from partial decomposition of 
analytes. These peaks can overlap with the true 
peaks from the standards. The conventional 
method of calibration prevents the identification 
of peaks by correlation analysis as all the stan- 
dards have the same concentration pattern. Cali- 
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bration is also usually based on area quantifica- 
tion. This is appropriate if the peaks are pure or 
overlapping impurities do not vary. However, 
real samples may not fulfil the above criteria, 
and this calls for a new strategy. 

Retention time shifts and different background 
from one chromatogram to another make it 
difficult to utilize several chromatographic pro- 
files jointly. Fortunately, in recent work [l], it 
was shown that by simplex optimization of the 
cross-correlation between selected target peaks, 
such retention time shifts could be minimized 
and the chromatographic profiles analysed by 
means of latent-variable projection methods [2- 
51. Thus, the one-dimensional chromatograms 
from different runs can be made comparable by 
using this technique first. Fig. la and b show the 
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gas chromatographic profiles for the nine cali- 
bration samples before and after baseline and 
retention time correction, respectively. The 
chromatograms from different runs can now be 
collected in a data matrix, in which each column 
represents the digital chromatographic profile of 
one sample and each row the chromatographic 
concentration of the different samples at a 
specific retention time point. Every region in 
chromatographic profiles can now be subjected 
to a local factor analysis as developed for cou- 
pled chromatography in heuristic evolving latent 
projections (HELP) methods [3-51. 

In this study, we investigated a model system 
consisting of peracetylated aldoses. By mixing 
the standards according to a factorial design [6], 
the different chemical components are forced to 

a 
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Fig. 1. Gas chromatographic profiles from peracetylated aldoses. (a) Raw data; (b) retention time, baseline and internal standard 
adjusted data. Time scale in min. 
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vary independently. The aldose standards equili- 
brate into anomeric isomers in acidic water, 
introducing several correlated peaks into the 
chromatograms. These correlations depict the 
decomposition of a compound and/or the exist- 
ence of impurities in the standards, which give 
rise to correlated peaks in the chromatograms. 
There are also peaks from the derivatization 
reagents. Hence it should be possible to find 
three different kind of chromatographic areas: 
(i) non-correlated areas from the different ex- 
perimentally designed aldoses, (ii) highly corre- 
lated areas derived from the isomerization of the 
aldoses and (iii) non-correlated areas, e.g., from 
the derivatization reagents, which do not corre- 
late with the designed concentration patterns. 
The first two types of areas should also correlate 
with the designed concentration patterns. In this 
paper, we present the advantages of using pre- 
processed chromatograms which are analysed as 
digital profiles by the HELP method. This pro- 
vides a systematic way to find and identify the 
origin of chromatographic peaks in one-dimen- 
sional chromatography and to check the purity of 
each analyte. 

THEORY 

Rank analysis of a chromatographic profile 
As discussed in the Introduction, a data matrix 

can be constructed by including different chro- 
matographic profiles of calibration samples. For 
ease of comparison with the HELP resolution 
procedure developed for multi-detection chro- 
matography, we let each column represent the 
digital chromatographic profile of one sample, 
and, consequently, each row the detector re- 
sponse of the different samples at a specific 
retention time point. Eigenstructure-tracking 
analysis (ETA) utilizing local principal compo- 
nent analysis (PCA) [7,8] can now be used for 
the analysis of the resulting matrix. This pro- 
cedure performs PCA on local regions of the 
chromatographic profiles by moving a window of 
specified size from the first until the last re- 
tention time point and plotting the evolving 
eigenvalues in the retention time direction. The 
procedure starts with a window size of two and is 
repeated with a window of three, four, etc., until 

the window size exceeds by one the maximum 
number of co-eluting chemical components. With 
this window size, the last-evolving eigenvalue 
corresponds to the noise level over the entire 
elution region. The number of evolving eigen- 
values above the noise level corresponds to the 
number of co-eluting chemical compounds in a 
local retention time region. For pure peaks only 
one eigenvalue is above the noise level. The plot 
of evolving eigenvalues can thus be used to 
assess the homogeneity of a peak [2]. 

In PCA the data matrix (X) is decomposed 
into scores (T) and loadings (P) according to 

X=TPT (1) 

For selective chromatographic regions, the 
concentrations for one chemical component from 
sample to sample are proportional to the ele- 
ments in the first loading vector (p). This may 
appear strange, since the score vector maps the 
chromatographic concentration profile for selec- 
tive chromatographic regions [3]. However, this 
follows from the design and the organization of 
the data described above. Further details can be 
found in ref. 2. 

Note that the HELP method works on un- 
centred data so that correlation is defined around 
the origin, not around the mean as is commonly 
done in factor analysis (see ref. 7, p. 40). The 
information on peak origin can therefore be 
obtained by comparing the first loadings from 
selective regions detected by the HELP method 
with the uncentred orthogonal concentration 
patterns from the experimental design. The 
procedure is illustrated in Fig. 2. 

One-component and zero-component regions of 
chromatographic profiles 

Chromatographic profiles possess an attractive 
feature: chemical compounds appear and dis- 
appear in a continuous manner during elution. 
Thus, signals at neighbouring retention time 
points tend to correlate. This gives an oppor- 
tunity to perform correlation analysis by apply- 
ing PCA on interesting chromatographic regions. 
Let a,,j be an element in a data matrix (A) at the 
ith retention time point and from the jth cali- 
bration sample. The sub matrix A,,b including a 
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Fig. 2. Assessment of peak origin by the heuristic evolving 
latent projections method for one-dimensional chromato- 
grams on several samples. (a) Pre-processed data matrix; (b) 
local principal component decomposition of the submatrix 
into loadings (eigenvectors) and eigenvalues; (c) designed 
concentration pattern; (d) first loading vector from a selec- 
tive region; (e) assessment of peak origin by analysis of the 
correlation between the loadings from a selective region and 
the designed concentrations. 

particular retention time interval (the shaded 
region in Fig. 2) can be expressed by 

‘i+l la,+1 Zai+l 3 ” “i+l,N 1 . . 
‘i+Z l”i+2 2’i+2 3 * ’ * ‘i+2 N 

A=‘:’ :’ 
sub (2) 

‘i+k l”i+k Z’i+k 3 ’ ’ “i+k,N 1 . 7 

Let us take a simple situation as example 
where there is only one chemical species, say 
component p, eluting from retention time point 
i + 1 to i + k. In this case the chromatographic 
values for sample g, a, + 1, g, a, + 2, g, . . . , 
ui + k, g, should all be proportional to the 
designed concentration of component p in sam- 
ple g. That is, 

(j=1,2 ,..., k,g=l,2 ,..., N) (3) 

where cp g , indicates the designed concentration 
of component p in sample g and rj is a pro- 
portionality constant. 

Note that eqn. 3 implies that all the rows, 

uj = (“i+j,lui+j,?ui+j,3 . ’ - u~+~,~), in the submatrix 
A sub can be linearly expressed by one vector, 

ca = ($,I ‘,¶.2’&3 ’ . ’ $,A’ ). In mathematical 
terms, the rank of the matrix Asub is one. Such a 
one component region is called a selective region 
in the HELP method [3,4]. 

Because of the measurement error from the 
instrument, eqn. 3 should include an error term: 

ui+j,g = rjCp,g + ei+j,g 

For this reason, ETA is used for resolving 
significant signals from noise, i.e., for finding the 
“chemical rank” (number of components under a 
studied peak). The task is completed by compar- 
ing the eigenvalues obtained from the matrix 
A sub with the first eigenvalue from the regions 
with no chemical signals above the baseline, i.e., 
the so-called zero-component regions [2-51. The 
rationale for this comparison has been published 
recently [9]. 

Loading pattern and designed concentration 
pattern 

As discussed in the last section, a submatrix 
A sub containing only one chemical component 
can be decomposed to provide a loading vector, 

P/3 = (P,,lP,,2&3,3 ’ ’ - pP N), with the concentra- 
tions of the chemical components as elements. 
This vector can be used to find the origin of the 
peak. It is the experimental design with indepen- 
dent concentration patterns for different chemi- 
cal analytes, which permits such identification. If 
the studied peak originates from the calibration 
set, the first loading vector from a selective 
region is proportional to one of the designed 
concentration vectors, i.e., pP 0~ co. On the other 
hand, if the first loading vector obtained from 
PCA for a one-component region does not 
correlate with any designed concentration pat- 
tern, the peak is a so-called “ghost” peak. 
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Latent-variable correlation chromatograms 
A noise-reduced evolving correlation pattern, 

latent-variable correlation chromatogram 
(LVCC), can be constructed in the following 
way: 

TABLE I 

EXPERIMENTAL DESIGN 
MIXING OF STANDARDS 

MATRIX USED IN THE 

The true amounts can be found in Table II. 

(1) Selective regions are identified by ETA. 
(2) Target concentration profiles are calcu- 

lated with a local PCA, one for each selective 
region. The whole selective regions are used to 
provide maximum noise reduction. The first 
loadings vector in a selective region defines the 
target concentration profile, pt, for a chemical 
component. 

Standard 
No. 

Xylose Arabinose Rhamnose 

(3) A local PCA is performed, starting from 
the three first retention time points, moving in 
step by one until the end of elution. The first 
evolving loading vector, p,, is stored. Step 3 
provides a further noise reduction. 

+1 
-1 
+1 
-1 

0 
0 

+3 
0 
0 

+1 
+1 
-1 
-1 

0 
0 
0 

+3 
0 

-1 
+1 
+1 
-1 

0 
0 
0 
0 

+3 

(4) The latent-variable correlation chromato- 
grams are finally constructed by calculating and 
displaying the evolving correlation coefficients 
between the target loading vectors in step 2 and 
the evolving loading vectors in step 3, i.e., p,‘p,. 

EXPERIMENTAL 

Sample description 
The sample set used in this work was mixed 

from individual standards of xylose, arabinose 
and rhamnose . A four-level factorial design 
(Table I) was used in the mixing of the standards 
in order to define their concentration patterns. 
The first four experiments are half of a two-level 
factorial design for three factors followed by two 
centre points. The last three experiments are the 
high star points of a star design. This design is 
not orthogonal by the common definition used in 
experimental design if the columns are mean- 
centred. However, as discussed under Theory, 
the PCA modelling in the HELP method is 
based on uncentred data and therefore the 
concentration patterns between the aldoses are 
totally independent (orthogonal; x,?xj = 0). Table 
II shows the amounts of the three aldoses in the 
mixture samples. The aldoses were peracetylated 
with acetic anhydride using 1-methylimidazole as 
catalyst [lo]. All samples were analysed on a 
Packard Model 427 gas chromatography 
equipped with a flame ionization detector and a 

CP-SIL 88 (9 m x 0.22 mm I.D.) capillary col- 
umn with helium as carrier gas at 150 cm/min 
(splitting ratio 1:20). Detailed conditions are 
given in ref. 7. Nelson 2600 chromatography 
software was used for collecting digital chro- 
matographic elution profiles. The first 200 data 
points (retention time range 2.85-4.75 min, 
sampling interval 0.6 s) from the profiles were 
used in this paper. 

Data pretreatment and analysis 
Retention time adjustment, baseline correc- 

tion and intensity normalization were first per- 
formed on a IBM PC-486 compatible computer 

TABLE II 

AMOUNTS OF SUGARS (IN mg) AT THE DIFFERENT 
DESIGN LEVELS 

The coded design levels correspond to the amounts in Table 
I. 

Sugar Design level 

-1 0 +1 +3 

Xylose 1 4.75 8.5 16 
Arabinose 1 4.75 8.5 16 
Rhamnose 1 3.25 5.5 10 
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by means of ChromPro software (BioTriMark, 
Bjorkkulla, Funbo, Uppsala, Sweden). The 
chromatograms were normalized in regions with 
high intensities in order to correct for the effect 
of increased noise with increased signal, i.e., 
heteroscedasticity [4,11]. The data were then 
analysed by means of the HELP method. The 
software used for data analysis was written in 
VAX FORTRAN and implemented on a VAX- 
station 2000 [3]. 

RESULTS AND DISCUSSION 

2.364 

FID 

z? -0 0.0 

3 2 -1 

5 -2 
.F L -3 

Defining peak purity by local PCA 
PCA can be used for resolving signals from 

noise. If a region of a chromatographic area 
contains only one pure chemical component, the 
chemical rank of the submatrix Asub (represent- 
ing the chromatographic signal intensity for the 
region of elution of that peak) is one and the 
data contain only one principal component 
above the noise level. Such a region is referred 
to as a selective region [3-51. The eigenvalues 
from PCA obtained from the matrix Asub are 
compared with the first eigenvalue from the 
zero-component regions [3,4]. If the second 
eigenvalue of the studied region is significantly 
smaller than the first eigenvalue obtained from 
the zero-component region (noise level), the 
studied region can be considered to have chemi- 
cal rank one. Fig. 3 shows the results from an 
ETA obtained with window sizes three and two. 
This will give a rank map for every local re- 
tention time region [5]. For instance, Fig. 3 
shows that the second eigenvalue is larger than 
the noise level around data points 18, 57, 110 
and 182. Hence the number of co-eluting chemi- 
cal components is two in these regions. 

A comparison of eigenvalues between the 
zero-component regions and the selective regions 
is shown in Table III. The first eigenvalues from 
the selective regions are all significantly larger 
than those from the zero-component regions 
(noise level or detection limit), showing the 
presence of chemical substances. In selective 
regions the second eigenvalues are all smaller 
than the first eigenvalues from the zero-com- 
ponent regions, indicating the presence of only 
ooze compound in the regions. If the second 

2.384 
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Fig. 3. Eigenstructure-tracking analysis of the data using 
window sizes three (top) and two (bottom). The upper trace 
in both parts is one of the chromatograms, followed by the 
first, second and (in the top part) third eigenvalues. The 
dashed horizontal lines indicate the noise level. 

eigenvalues from some regions are larger than 
the zero-component region and the third eigen- 
value smaller, these regions are two-component 
regions. 

Concentration patterns, peak origin and 
resolution 

The first loading vector in the selective regions 
obtained by local PCA displays the chromato- 
graphic concentration pattern (Fig. 4). These 
loadings should be proportional to some of the 
designed concentration vectors if the chemical 
components in these regions are derived from 
the standards or their decomposition products 
(illustrated by anomeric isomers). By comparing 
the loading vectors (Fig. 4) with the designed 
concentration profiles for the three standards 
(Fig. 5), the origin of the peaks can be estab- 
lished. The region denoted C in Fig. 4 is noisy as 
this chromatographic peak is very small, but one 
can still easily identify its origin (rhamnose). It is 
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TABLE III 

EIGENVALUE COMPARISON BETWEEN THE ZERO-COMPONENT REGIONS AND SELECTIVE REGIONS 

119 

Retention time points First eigenvalue Second eigenvalue Peak in Fig. 4 

Zero-component regions 
4-6 0.0254 0.0082 
M-47 0.0250 0.0064 
156-159 0.0269 0.0076 

Selective regions 
12-15 0.2138 0.0151 A 
23-26 0.8037 0.0058 B 
48-51 0.1351 0.0136 C 
62-65 0.8154 0.0101 D 
117-120 0.8414 0.0108 E 
171-173 0.6931 0.0053 F 

interesting to look at the peaks at retention time 
3 min. The first peak can, with some difficulty, 
be visually detected in sample 1 and sample 8 
(Fig. lb). However, the loading pattern from 
local PCA based on four retention time points 
(Table III) in the beginning of the peak cluster, 
denoted A in Fig. 4, correlates well with the 
concentration profile of arabinose (Fig. 5). This 

Sample loading Sample loading Sample loading Sample loading 

Lk4 
Sample loading 

1,. . . , , . . , I I I., I,.’ I__-)-4 
50 100 150 

IhIP points Sample loading 

Fig. 4. Sample loading pattern (concentration) in selective 
areas (A-F) which correlates with the designed concen- 
trations (Fig. 5). 
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-2 ( 
0 2 4 6 8 

Sample number 

Fig. 5. Designed concentration pattern in the nine calibra- 
tion mixtures. 
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is a clear advantage in comparison with the older 
integration approaches where the correlation can 
only be analysed between integrated peak areas 
(one needs at least ten data points for good 
integration results). Fig. 6 shows the first loading 
vectors for three other selective regions where 
the concentration patterns are far away from the 
designed ones. These peaks are impurities from 
the derivatization step. 

The above-mentioned methods provide good 
tools for the detection of peak impurities and for 
the assessment of peak origin. Calibration results 
can be improved by eliminating the influence of 
impurities. This can be done by first resolving 
the peaks by the HELP method [3,5] and then 
using the resolved peak of the analytes for 
calibration. For example, the peak cluster 
around retention time 4.4-4.7 min contains two 
peaks (figs. lb and 4), where the latter is an 
impurity (denoted C in Fig. 6). These peaks 
were resolved with the HELP method (Fig. 7). 

Sample loading Sample loading Sample loading 

50 100 154 
Data points 

Fig. 6. Sample loading pattern (concentration) in selective 
areas derived from “ghost” peaks. 

s 
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Fig. 7. Two-peak cluster at 4.5 min resolved by the HELP 

method. 

Latent-variable correlation chromatography 
In order to investigate thoroughly the correla- 

tion between one selected peak and all the other 
areas in the chromatogram, we introduce here 
the concept of latent-variable correlation chro- 
matograms (LVCC). A chemical compound 
which is in equilibrium with different isomers, or 
a minor decomposition product, or an impurity 
in a standard, should have the same concen- 
tration profile with only differences in mag- 
nitude. The simplest way to assess similarities in 
concentration profiles is to calculate the correla- 
tion coefficient between two data points in the 
different chromatograms. However, a simple 
correlation coefficient is noise sensitive and we 
therefore use the loadings from principal com- 
ponent analysis for the calculation of the correla- 
tions (see Theory). A correlation coefficient near 
1.0 indicates that the compounds have the same 
origin, whereas two compounds with indepen- 
dent concentration patterns have a correlation 
close to zero. It is also possible to obtain a 
correlation coefficient close to -1 if a single 
sample is run several times and a compound in 
the mixture decomposes giving a new, perhaps 
highly overlapped peak in the chromatogram. 
This is useful, for example, when studying the 
stability of compounds. 

Fig. 8a shows three selected pure one-com- 
ponent areas (1, 2 and 3). These areas were 
selected by the ETA proceduce (at the minimum 
of the second eigenvalue at the bottom of Fig. 
8a). Each of the three areas consists of three 
data points and are centred around retention 
times 3.0, 3.95 and 4.5 min, respectively (Fig. 
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Fig. 8. (a) ETA using two retention time points as the 
window size. The top trace is one of the chromatograms, 
followed by the first and second eigenvalues. Three pure 
one-component areas (l-3) were selected as the target 
concentration patterns. (b) Three latent-variable correlation 
chromatograms (lst, 2nd and 3rd) calculated for each select- 
ed area. 

lb), corresponding to the data point intervals 
22-24, 117-119 and 170-172 in Fig. 8. Three 
separate PCAs are applied to these areas and the 
first loading vector is used as the target concen- 
tration patterns. A concentration profile chro- 
matogram is constructed by ETA using three 
retention time points as the window size. For 
each of the three target areas an LVCC is 
constructed by a sequential calculation and dis- 
play of the correlation between the first loading 
vector from the target area and all the loadings 
in the concentration profile chromatogram (Fig. 
8b lst-3rd). In the first LVCC, we can see that 
the correlation coefficients are close to one 
between data points 18-30 and 50-70. The first 
interval (18-30) includes the first target window 
and the second (50-70) a peak with a highly 
correlated concentration pattern. In the second 
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LVCC (Fig. 8b, 2nd), only the target area has a 
correlation close to 1, which shows that the 
second target area has a unique concentration. 
The last LVCC (Fig. 8b, 3rd) indicates that the 
minor peak, with the maximum at data points 
13-15, strongly correlates with the third target 
concentration profile. This small peak has only a 
few pure data points at the beginning of the peak 
cluster and it is notable that it was possible to 
identify its origin. 

CONCLUSIONS 

The following stepwise procedure is proposed 
for improved control of the calibration process in 
one-dimensional chromatography: 

(1) In the calibration step, the standards are 
mixed according to an experimental factorial 
design, Plackett-Burman design [12], an ortho- 
gonal array or a response surface design to 
create uncorrelated concentration patterns. 

(2) The chromatograms are made comparable 
by adjustment of retention time and baseline 
shifts. 
This allows the analysis of the chromatograms as 
digital profiles. 

(3) Heuristic evolving latent projections is 
applied on the profiles using the following steps: 

(a) the noise level is determined from 
baseline regions (zero-component regions); 

(b) ETA is performed in order to distin- 
guish between pure one-component regions 
(peak purity check) and areas with overlapping 
peaks; 

(c) the peak origin is established by analysis 
of the congruence between the sample loadings 
from pure one-component areas and designed 
concentration patterns; 

(d) if a peak from a standard overlaps with 
other peaks which have a different concentration 
pattern, it can be resolved with the HELP 
method and the resolved areas are used in the 
calibration. 

(4) Latent variable correlation chromato- 
grams provide a powerful tool for finding chro- 
matographic regions with similar concentration 
patterns. This method can also be used without 
calibration. 
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